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accordingly finite pointed tensor categories, are provided.
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1. Introduction

Tensor categories appear, as a ubiquitous algebraic structure, in many areas of

mathematics and theoretical physics, for example representation theory, quan-

tum algebra, topology, quantum computation, conformal field theory, and topo-

logical orders. The classification problem of tensor categories has been a central

research theme for the last several decades.

In the theory of tensor categories, the idea of Tannakian formalism is indis-

pensable and aims to concretize abstract tensor categories as module categories

of concrete algebras. Though a criterion for the reconstruction of general tensor

categories is not yet available, Etingof and Ostrik observed in [13] the important

fact that any finite tensor category whose objects all have integer Frobenius–

Perron dimension is equivalent to the module category of a finite-dimensional

quasi-Hopf algebra. This reduces the classification problem of finite pointed

tensor category to that of elementary quasi-Hopf algebras. Recall that an alge-

bra is said to be elementary, if it is finite-dimensional and its simple modules

are 1-dimensional.

The classification problem of finite pointed tensor categories motivates many

new constructions of elementary quasi-Hopf algebras. Certainly this is closely

related to that of finite-dimensional pointed Hopf algebras, as the dual of the

latter are elementary Hopf algebras. Therefore, the beautiful theory of finite-

dimensional pointed Hopf algebras of Andruskiewitch and Schneider (see [1]

and references therein) serves as the starting point for the investigation of ele-

mentary quasi-Hopf algebras. Etingof and Gelaki started the pioneering work

and published a series of papers [11, 14, 9, 12], in which they provided a new

method of constructing genuine elementary quasi-Hopf algebras from known

finite-dimensional pointed Hopf algebras and obtained an explicit classification

for genuine elementary quasi-Hopf algebras over cyclic groups of prime order.

Along the same line, in [2] Angiono extended Etingof and Gelaki’s construc-

tion and achieved a complete classification of genuine elementary quasi-Hopf

algebras over cyclic groups whose order is not divisible by 2, 3, 5, 7. Here, by

“genuine” is meant the quasi-Hopf algebra is not twist equivalent to a Hopf

algebra.

On the other hand, the well-developed ideas and techniques from the rep-

resentation theory of finite-dimensional algebras (see, e.g., [3]) can be natu-

rally applied to the classification problem of finite pointed tensor categories.
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In particular, the handy quiver techniques help to visualize the constructions

of elementary quasi-Hopf algebras and their representations, and thus finite

pointed tensor categories. This paper aims to contribute more classification re-

sults within the quiver framework of tensor categories and quasi-Hopf algebras

initiated in [16, 17, 19]. The ultimate goal is to provide a complete classification

of elementary quasi-Hopf algebras and the associated finite pointed tensor cat-

egories. In the representation theory of finite-dimensional algebras, the concept

of representation types is a valuable invariant which measures the complexity

of representation categories. The well-known trichotomy theorem of Drozd [8]

asserts that the representation category of an algebra is either of finite, tame,

or wild type and these three are exclusive. Roughly speaking, the cardinality

of the set of finite-dimensional indecomposable representations is either finite,

infinite but at any fixed dimension almost all contained in a finite number of

one-parameter families, or infinite but not as the previous case. Representa-

tion types provide a natural standard for the classification of finite-dimensional

algebras and their representations.

Unfortunately, it is generally believed to be an impossible mission to give

an explicit trichotomy for all finite dimensional algebras via their representa-

tion types. However, such an aim seems reasonable for elementary quasi-Hopf

algebras over an algebraically closed field of characteristic 0. For elementary

Hopf algebras, an explicit trichotomy has been achieved in [24, 22, 18, 23]. For

elementary quasi-Hopf algebras, those of finite representation type have been

obtained in [19]. As a continuation of [19], the purpose of this paper is to pro-

vide a complete classification of elementary graded quasi-Hopf algebras of tame

type. This will complete the trichotomy of the class of elementary graded quasi-

Hopf algebras and the corresponding class of finite pointed tensor categories in

the sense of Drozd.

Comparing with the case of Hopf algebras, or equivalently finite pointed ten-

sor categories with fiber functors, we are facing two obvious difficulties. The first

is that the classification procedure developed in [18, 23] is not applicable directly

to the quasi-Hopf case. A key step in the Hopf case is to decompose a graded

elementary Hopf algebra H as the biproduct or bosonization RH#H/JH where

RH is a local subalgebra and thus Ringel’s remarkable classification result [25]

about local algebras can be applied. Though in the quasi-Hopf case one may still

define biproduct or bosonization accordingly (see, e.g., [4]), the resulting algebra
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RH is not, in general, a usual associative algebra and if we make it into an asso-

ciative algebra artificially, then RH is not a subalgebra. The second is that the

associators of quasi-Hopf algebras are generally nontrivial and we need to deal

with 3-cocycles over abelian groups which are not cyclic. To overcome the first

difficulty, our basic idea is to realize a quasi-Hopf algebra of tame type as a sub-

algebra of a Hopf algebra with the same representation type. It turns out that

the recently developed methods of equivariantization and de-equivariantization

[9, 14, 7] can be applied. A key observation is that representation type is an in-

variant under the equivariantization and de-equivariantization procedures. This

helps to construct new graded quasi-Hopf algebras of tame type from known

Hopf algebras. For the second, we may use the unified formulae of normalized

3-cocycles of finite abelian groups obtained in [20]. Another key observation

is that we only need to deal with 3-cocycles ω on the direct product of two

cyclic groups Z� × Z� and they are resolvable in bigger finite abelian groups,

i.e., there exist group epimorphisms π : Z�2 × Z�2 → Z� × Z� such that the

pull-back π∗(ω) are coboundaries. This observation allows us to prove that the

constructed graded quasi-Hopf algebras previously exhaust all genuine graded

quasi-Hopf algebras of tame type.

The paper is organized as follows. In Section 2, some preliminaries are pro-

vided. In particular, the basic ingredients of quiver methods and the definitions

of equivariantization and de-equivariantization are recalled. In Section 3, we

show that representation type is an invariant under the equivariantization and

de-equivariantization procedures. As a technical preparation, Section 4 is de-

voted to the analysis of the generators of abelian groups. In Section 5, some new

quasi-Hopf algebras are constructed. The main result is formulated in Section

6, which states that any tame graded elementary quasi-Hopf algebra is twist

equivalent to either a Hopf algebra as given in [18] or a quasi-Hopf algebra as

constructed in Section 5.

Throughout this paper, we work over an algebraically closed field k of charac-

teristic zero. For convenience, we fix some notation. Given any natural numbers

m,n, let [m
n ] denote the floor function of m,n, i.e., the biggest integer which is

not bigger than m
n . Let G be a finite group and g ∈ G; by o(g) we denote the

order of g.
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2. Preliminaries

In this section, we will recall the definition of quasi-Hopf algebras, equivarianti-

zation and de-equivariantization that appeared in [7], representation types and

some basic facts about Hopf quivers [5] (or equivalently covering quivers [15]).

2.1. Quasi-Hopf algebras. A quasi-bialgebra (H,M, μ,Δ, ε, φ) is a k-algebra

(H,M, μ) with two algebra morphisms Δ : H → H ⊗H (the comultiplication)

and ε : H → k (the counit), and an invertible element φ ∈ H ⊗H ⊗H (called

the associator), such that

(Id⊗Δ)Δ(a)φ = φ(Δ⊗ Id)Δ(a), ∀a ∈ H,(2.1)

(Id⊗ Id⊗Δ)(φ)(Δ ⊗ Id⊗ Id)(φ) = (1⊗ φ)(Id⊗Δ⊗ Id)(φ)(φ ⊗ 1),(2.2)

(ε⊗ Id)Δ = Id = (Id⊗ε)Δ,(2.3)

(Id⊗ε⊗ Id)(φ) = 1⊗ 1.(2.4)

We denote φ =
∑

X i ⊗ Y i ⊗ Zi and φ−1 =
∑

X
i ⊗ Y

i ⊗ Z
i
. Then a

quasi-bialgebra H is called a quasi-Hopf algebra if there is a linear algebra

antimorphism S : H → H (the antipode) and two elements α, β ∈ H satisfying

for all a ∈ H ,∑
S(a(1))αa(2) = αε(a),

∑
a(1)βS(a(2)) = βε(a),(2.5) ∑

X iβS(Y i)αZi = 1 =
∑

S(X i)αY iβS(Zi).(2.6)

We say that an invertible element J ∈ H ⊗ H is a twist of H if it satisfies

(ε ⊗ Id)(J) = (Id⊗ε)(J) = 1. For a twist J =
∑

fi ⊗ gi with inverse J−1 =∑
fi ⊗ gi, set

αJ :=
∑

S(fi)αgi, βJ :=
∑

fiβS(gi).

It is well known that given a twist J of H , then one can construct a new quasi-

Hopf algebra structure [6] HJ = (H,ΔJ , ε,ΦJ , S, αJ , βJ) on the algebra H ,

where

ΔJ (a) = JΔ(a)J−1, ∀a ∈ H,

and

ΦJ = (1⊗ J)(Id⊗Δ)(J)(Δ ⊗ Id)(J−1)(J ⊗ 1)−1.

Definition 2.1: Two quasi-Hopf algebras H1 and H2 are called twist equivalent

if there is a twist J of H1 such that H2
∼= HJ

1 as quasi-Hopf algebras.
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2.2. Equivariantization and de-equivariantization. Let C be a k-linear

category. Let End(C) denote the category of k-linear functors C → C. This is a
monoidal k-linear category (the tensor product is the composition of functors).

For a finite group G, let G denote the corresponding monoidal category: the

objects of G are elements of G, the only morphisms are the identities and the

tensor product is given by multiplication in G.

Definition 2.2: An action of G on C is a monoidal functor F : G → End(C).
Remark 2.3: If C is a tensor category over k, then we use Aut(C) to denote

the category whose objects are tensor auto-equivalences of C and whose mor-

phisms are isomorphisms of tensor functors. And an action of G on C is defined

correspondingly as a monoidal functor F : G → Aut(C).
Let G be a finite group acting on a k-linear abelian category C. For any

g ∈ G let Fg ∈ End(C) be the corresponding functor, and for any g, h ∈ G let

γg,h be the isomorphism Fg ◦Fh � Fgh that defines the tensor structure on the

functor F : G → End(C). A G-equivariant object of C is an object X ∈ C
together with isomorphisms ug : Fg(X) � X such that the diagram

Fg(Fh(X)) � Fg(X)

Fgh(X) � X

� �

Fg(uh)

ugh

γg,h ug

commutes for all g, h ∈ G.

One defines morphisms of equivariant objects to be morphisms in C commut-

ing with ug, g ∈ G. The category of G-equivariant objects of C will be denoted

by CG, which is called the equivariantization of C.
Let A := Fun(G) be the algebra of functions G → k. The group G acts on

A by left translations, so A can be considered as an algebra in the monoidal

category Rep(G). Let D be a k-abelian category with a k-linear action of

Rep(G), that is, there is a k-linear monoidal functor F : Rep(G) → End(D).

The category of A-modules in D will be called the de-equivariantization of

D, which will be denoted by DG.
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Let C be a k-abelian category with a G-action F : G → End(C). Clearly, we
have the following two functors:

The forgetful functor Φ : CG → C

The induced functor Ind : C → CG, Ind(X) :=
⊕
g∈G

Fg(X).

The following lemma is derived from [7, Lemma 4.6] directly (though [7, Lemma

4.6] is proved in the semisimple case, it is clearly true for the non-semisimple

case).

Lemma 2.4: For X ∈ C and Y ∈ CG, we have

X |Φ(Ind(X)), Y |Ind(Φ(Y )).

Here and below, by X |Z it is meant that X is a direct summand of Z.

The main property of equivariantization and de-equivariantization is recalled

in the following lemma; see [7, Theorem 4.9] (as stated in [10, Theorem 2.3], [7,

Theorem 4.9] is also true in the non-semisimple case).

Lemma 2.5: The procedures of equivariantization and de-equivariantization are

inverse to each other. In particular:

(i) If there is a G-action on C, then C is equivalent to (CG)G.

(ii) If there is a Rep(G)-action on C, then C is equivalent to (CG)G.
2.3. Representation types. A finite-dimensional algebra A is said to be of

finite representation type provided there are finitely many iso-classes of

indecomposable A-modules. Also, A is of tame type or A is a tame algebra

if A is not of finite representation type, whereas for any dimension d > 0,

there are a finite number of A-k[T ]-bimodules Mi which are free of finite rank

as right k[T ]-modules such that all but a finite number of indecomposable A-

modules of dimension d are isomorphic to Mi ⊗k[T ] k[T ]/(T − λ) for λ ∈ k.

We say that A is of wild type or A is a wild algebra if there is a finitely

generated A-k〈X,Y 〉-bimodule B which is free as a right k〈X,Y 〉-module such

that the functor B ⊗k〈X,Y 〉 − from Rep(k〈X,Y 〉), the category of finitely

generated k〈X,Y 〉-modules, to Rep(A), the category of finitely generated A-

modules, preserves indecomposability and reflects isomorphisms.

The well-known Drozd’s trichotomy theorem [8] can be stated as follows.



164 HUA-LIN HUANG, GONGXIANG LIU AND YU YE Isr. J. Math.

Theorem 2.6: Every finite-dimensional algebra is either of finite, tame, or wild

type and these three are mutually exclusive.

2.4. Quiver setting for quasi-Hopf algebras. A quiver is an oriented

graph Γ = (Γ0, Γ1), where Γ0 denotes the set of vertices and Γ1 denotes the

set of arrows. Let kΓ denote the associated path algebra of the quiver Γ. An

ideal I of kΓ is called admissible if JN ⊂ I ⊂ J2 for some N ≥ 2, where J is

the ideal generated by all arrows.

For an elementary algebra A, by Gabriel’s Theorem, there is a unique quiver

ΓA, and an admissible ideal I of kΓA, such that A ∼= kΓA/I (see [3]). The

quiver ΓA is called the Gabriel quiver or Ext-quiver of A.

Next, let us recall the definition of covering quivers (see [15]). Let G

be a finite group and let W = (w1, w2, . . . , wn) be a sequence of elements of

G. We say W is a weight sequence if, for each g ∈ G, the sequences W and

(gw1g
−1, gw2g

−1, . . . , gwng
−1) are the same up to a permutation. In particular,

W is closed under conjugation. Define a quiver, denoted by ΓG(W ), as follows.

The vertices of ΓG(W ) comprise the set {vg}g∈G and the arrows are given by

{(ai, g) : vg−1 → vwig−1 | i = 1, 2, . . . , n, g ∈ G}.
We call this quiver the covering quiver (with respect to G and W ).

The concept of covering quivers is indeed dual to the concept of Hopf quivers

that appeared in [5]. Parallel to the proof of [16, Theorem 3.1] we have

Lemma 2.7: Let H be an elementary quasi-Hopf algebra. Then its Gabriel’s

quiver is a covering quiver.

Let H be an elementary quasi-Hopf algebra, Q(H) its Gabriel’s quiver. By

Lemma 2.7, Q(H) = ΓG(W ) for some group G and some weight sequence W.

The following definition was given in [21].

Definition 2.8: Let H be an elementary quasi-Hopf algebra and ΓG(W ) its

Gabriel’s quiver. Define nH to be the cardinal number of W and call it the

representation type number of H .

The following is a direct consequence of [21, Theorem 2.1].

Lemma 2.9: Let H be an elementary quasi-Hopf algebra of tame type and nH

its representation type number. Then we have:

(i) H is of finite representation type if and only if nH = 1.
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(ii) If H is tame, then nH = 2.

3. Invariance of representation type

For convenience, we extend the notion of representation types of finite-dimensio-

nal algebras to that for general finite abelian categories. The point is to get

an invariant to measure the cardinality of the indecomposable objects of any

such category. Recall that an abelian category C is called finite if it is Morita

equivalent to Rep(A) for some finite-dimensional algebra A. Note that this is

equivalent to saying

(i) C is a k-linear abelian category and has finite-dimensional spaces of

morphisms;

(ii) every object of C has finite length;

(iii) there are enough projective objects in C; and
(iv) there are finitely many isomorphism classes of simple objects.

Definition 3.1: Let C be a finite abelian category and assume that C is Morita

equivalent to Rep(A). The category C is said to be of finite type, tame type,

or wild type if the algebra A is of finite, tame, or wild representation type

respectively.

Clearly, the representation type of an algebra is an invariant of Morita equiv-

alence, hence the above definition is independent of the choice of A.

The main aim of this section is to show that the type of a finite abelian cate-

gory is preserved under the procedures of equivariantization or de-equivarianti-

zation.

Proposition 3.2: C is a finite abelian category if and only if CG is so.

Proof. Clearly, the properties (i), (ii), (iv) hold for C if and only if they hold

for CG. It remains to prove this for (iii). The proof is divided into four claims.

Claim 1: If P is projective in CG, then Φ(P ) is projective in C.
Proof. Assume we have the following diagram in C:
where π is an epimorphism. From this, we get a diagram in CG:
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Φ(P )

M � N

�
�
���π

f

P

Ind(M) � Ind(N)

�
�
���Ind(π)

f̃

where f̃ is obtained by averaging f with respect to G but without multiplying
1
|G| . Since P is projective in CG, there is a g ∈ HomCG(P, Ind(M)) such that

f̃ = Ind(π) ◦ g. Note that M |Ind(M) and N |Ind(N). By restricting Ind(π) to

M , we have f = π ◦ g. Therefore, Φ(P ) is projective in C.

Claim 2: If P is projective in C, then so is Ind(P ) in CG.

Proof. Assume we have the following diagram in CG:

Ind(P )

M � N

�
�
���π

f

where π is an epimorphism. Since P is projective in C, there exits a

g ∈ HomC(Φ(Ind(P )),Φ(M)) such that f = π ◦ g. Similarly, by averaging

g with respect to G one gets g̃ and it is straightforward to show that f = π ◦ g̃.
This implies that Ind(P ) is projective in CG.

Claim 3: If (iii) holds in CG, then it holds in C too.

Proof. Take any object X ∈ C. By assumption, there is a projective object

P ∈ CG such that there is an epimorphism:

P � Ind(X).
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Since X |Φ(Ind(X)), we have

Φ(P ) � Φ(Ind(X)) � X.

Therefore, Claim 1 implies C also has enough projective objects.

Claim 4: If (iii) holds in C, then it holds in CG as well.

Proof. Take any object X ∈ CG. By assumption, there is a projective object

P ∈ C such that there is an epimorphism:

P � Φ(X).

This implies

Ind(P ) � Ind(Φ(X)) � X.

Therefore, by Claim 2, CG also has enough projective objects.

Corollary 3.3: C is a finite abelian category if and only if CG is so.

Proof. By Proposition 3.2, CG is a finite abelian category if and only if (CG)G
is so. Since C is always equivalent to (CG)G by Lemma 2.5, then the desired

result follows.

Now we are ready to give the main result of the section. The proofs of the

following two propositions are the same as those of Propositions 4.2 and 4.4 in

[22] except for some minor technical points. For the sake of completeness, we

include them here.

Proposition 3.4: C is of finite type if and only if CG is so.

Proof. “Only if part”: Let {X1, . . . , Xn} be a complete set of non-isomorphic

indecomposable objects in C. Suppose X is an indecomposable object in CG.

Then Φ(X) =
⊕n

j=1 njXj and so Ind(Φ(X)) =
⊕n

j=1 nj Ind(Xj). By Lemma

2.4, X | Ind(Φ(X)) and so X is a direct summand of Ind(Xj) for some j. There-

fore, the non-isomorphic indecomposable CG-summands of all the Ind(Xj) give

a complete set of non-isomorphic indecomposable objects in CG. Obviously this

set is finite, thus CG is of finite type.

“If part”: The proof is almost identical to the preceding part. Let

{Y1, . . . , Yn} be a complete set of non-isomorphic indecomposable objects in

CG. Suppose Y is an indecomposable object in C. Then Ind(Y ) =
⊕n

j=1 njYj

and so Φ(Ind(Y )) =
⊕n

j=1 njΦ(Yj). By Lemma 2.4, Y |Φ(Ind(Y )) and so Y is
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a direct summand of Φ(Yj) for some j. Therefore, the non-isomorphic inde-

composable C-summands of all the Φ(Yj) give a complete set of non-isomorphic

indecomposable objects in C. As the set is finite, C is of finite type.

Next we consider the case of tame type. Before moving on, we need to

recall a technical lemma. Let Λ be an arbitrary finite-dimensional algebra. In

[22] the category GC(Λ), called generic category, was defined to investigate

indecomposable Λ-modules. By definition, its objects are Λ-k[T ]-bimodules

which are finitely generated free as right k[T ]-modules and morphisms are Λ-

k[T ]-morphisms.

Lemma 3.5 ([22, Lemma 4.3]): Let X ∈ GC(Λ). Then X is indecomposable in

GC(Λ) if and only if X⊗k[T ]k[T ]/(T−λ) is indecomposable as a Λ-k[T ]/(T−λ)-

bimodule for some λ ∈ k.

Proposition 3.6: C is of tame type if and only if CG is so.

Proof. “Only if part”: Suppose that C = Rep(A) (for some finite-dimensional

algebra A) is tame and we will prove that CG = Rep(B) (for some finite-

dimensional algebra B) is also tame. Clearly, CG is not of finite type since

otherwise C is of finite type too by Proposition 3.4. Let d be a positive integer

and X an indecomposable B-module. Assume dimk X = d and Φ(X) = X1 ⊕
· · ·⊕Xm as a decomposition into indecomposable A-modules. Thus, X | Ind(Xi)

for some i ∈ {1, . . . ,m} by Lemma 2.4.

Since A is a tame algebra, there are finitely many A-k[T ]-bimodules Mj (j =

1, . . . , n) which are free with finite rank as right k[T ]-modules such that al-

most all indecomposable A-modules of dimension ≤ d are of the form Mj ⊗k[T ]

k[T ]/(T − λ) for some j and some λ ∈ k. In order to show that CG is tame,

there is no harm in assuming that Xi
∼= Mij ⊗k[T ] k[T ]/(T − λ) for some

ij ∈ {1, . . . , n} and some λ ∈ k. Clearly, we can still define Ind(Mij ) just

as usual and Ind(Mij ) ∈ GC(B).

Assume Ind(Mij ) =
⊕

k∈Ij
Mk

ij
for a finite index set Ij , where each Mk

ij
is

indecomposable in GC(B). By Lemma 3.5, Mk
ij
⊗k[T ] k[T ]/(T − λ) is indecom-

posable as an B-k[T ]/(T − λ)-bimodule too. This is equivalent to saying that

Mk
ij ⊗k[T ]k[T ]/(T−λ) is indecomposable as a B-module since k[T ]/(T−λ) ∼= k.
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Since

X | Ind(Xi) = Ind(Mij )⊗k[T ] k[T ]/(T − λ) =
⊕
k∈Ij

Mk
ij ⊗k[T ] k[T ]/(T − λ),

it follows that X ∼= Mk
ij
⊗k[T ] k[T ]/(T − λ) for some ij ∈ {1, . . . , n}, k ∈ Ij and

λ ∈ k. Since the set {Mk
ij |1 � ij � n, k ∈ Ij} is finite, B and thus CG is tame.

“If part”: The proof can be carried out in a similar manner as that of the “If

part” of Proposition 3.4 and so is omitted.

Theorem 3.7: Let C be a finite abelian category acted by a finite group G.

Then C and CG are of the same type.

Proof. Direct consequence of Propositions 3.4, 3.6 and Drozd’s trichotomy The-

orem 2.6.

Corollary 3.8: Let C be a finite abelian category with a Rep(G)-action and

|G| < ∞. Then C and CG are of the same type.

Proof. Direct consequence of Theorem 3.7 and Lemma 2.5.

4. Generators of abelian groups

In this section, we consider the following very elementary question, which is

important for our later computations: Given two generators g, h of �m ×�n =

〈g1, g2|gm1 = gn2 = 1, g1g2 = g2g1〉 with m|n, we know that there are integers

a, b, c, d such that g = ga1g
b
2, h = gc1g

d
2 and g, h generate �m ×�n. The question

is: can we simplify the expression of g, h? That is, up to an automorphism of

�m × �n, deduce the integers a, b, c, d as simple as possible.

To this end, we call two generators h1, h2 of �m × �n are standard if there

is an automorphism σ ∈ Aut(�m × �n) satisfying σ(g1) = h1, σ(g2) = h2. The

main result of this section can be formulated in the following form.

Proposition 4.1: Assume that g and h generate the abelian group �m × �n

with m|n. Then there are integers m1,m2, n1, n2, a, b such that

(i) m = m1n1, n = m2n2, m1|m2, n1|n2, (m2, n2) = 1;

(ii) 0 ≤ a < n2, 0 ≤ b < m2 and

g = g2h1h
a
2 , h = g1g

b
2h2
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where g1, g2 (respectively h1, h2) are standard generators of �m1 ×�m2 (respec-

tively �n1 × �n2).

To prove the proposition, we need a preliminary lemma.

Lemma 4.2: Let p be a prime and g, h be two generators of �pi × �pj with

i ≤ j. Assume that the order of g is not bigger than that of h. Then there

exists 0 ≤ a < pj such that

g = g1g
a
2 , h = g2

where g1, g2 are standard generators of �pi × �pj .

Proof. We start with two claims.

Claim 1: The order of h is pj .

Proof of Claim 1 : Otherwise, the orders of g and h will be strictly smaller than

pj . Therefore, there is an l < j such that gp
l

= hpl

= 1. From this, we know

the order of every element generated by g, h is at most pl. This is impossible

since g, h generate �pi × �pj .

Claim 2: h is standard.

Proof of Claim 2 : Regarding �pi ×�pj as a �pj -module, by Claim 1 〈h〉 = �pj

is a submodule. It is well known that �pj is a QF-ring (QF means quasi-

Frobenius). So there is a �pj -module M such that �pi × �pj = �pi ⊕ �pj =

M ⊕ 〈h〉. By the Structure Theorem of finitely generated abelian groups, M ∼=
�pi . Therefore, h is standard.

Now we are in a position to give the proof of this lemma. By Claim 2, there

are standard generators h1, h2 of �pi × �pj such that h = h2. Therefore, there

are s, t such that g = hs
1h

t
2. Since g, h generate �pi × �pj , h1 = gbhc for some

b, c. So we have

h1 = gbhc = hsb
1 htb+c

2 .

Thus sb ≡ 1(pi) and so (b, pi) = 1. From this, define the automorphism

ϕ : �pi × �pj → �pi × �pj , h1 �→ hb
1, h2 �→ h2.

Now let g1 := ϕ(h1), g2 := ϕ(h2), we get the desired result.

According to the proof of the previous lemma, we have the following
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Corollary 4.3: Let g, h be two generators of �m×�n with m|n. Assume the

order of h is n, then there are standard generators g1, g2 of �m ×�n such that

g = g1g
a
2 , h = g2

for some 0 ≤ a < m.

Proof of Proposition 4.1. Letm =
∏t

i=1 p
ai

i , n =
∏t

i=1 p
bi
i be the prime decom-

position of m,n. By assumption, ai ≤ bi. So �m × �n =
⊕t

i=1(�p
ai
i

× �
p
bi
i

).

For each 1 ≤ i ≤ t, let gi, hi be standard generators of �p
ai
i

× �
p
bi
i

. So there

are si, ti, xi, yi such that

g =

t∏
i=1

gsii hti
i , h =

t∏
i=1

gxi

i hyi

i .

We call gsii hti
i (resp. gxi

i hyi

i ) the i-th part of g (resp. i-th part of h). By Lemma

4.2, the i-th part of g or h is standard. So we may assume without loss of

generality that there exists 1 ≤ s ≤ t such that for each 1 ≤ j ≤ s the j-th part

of g is standard while the l-th part of h is standard for s ≤ l ≤ t.

Definem1 :=
∏s

i=1 p
ai

i , m2 :=
∏s

i=1 p
bi
i , n1 :=

∏t
i=s+1 p

ai

i , n2 :=
∏t

i=s+1 p
bi
i .

and g′1 :=
∏s

i=1 gi, g′2 :=
∏s

i=1 hi, h′
1 :=

∏t
i=s+1 gi, h′

2 :=
∏t

i=s+1 hi. Accord-

ing to our choice, one can assume that the product of the first s parts of g

equals g′2 and the product of the last t− s parts of h is h′
2. Using Corollary 4.3,

there are 0 ≤ a < n2 and 0 ≤ b < m2 such that

g = g2h1h
a
2 , h = g1g

b
2h2

where g1, g2 (respectively h1, h2) are standard generators of �m1 ×�m2 (respec-

tively �n1 × �n2).

5. Construction of quasi-Hopf algebras

Gelaki invented a method of constructing new quasi-Hopf algebras from known

Hopf algebras in [14]. Angiono generalized this method to classify elementary

quasi-Hopf algebras over cyclic groups with a minor condition [2]. In this sec-

tion, by applying Gelaki’s method we construct graded elementary quasi-Hopf

algebras of tame type which are over non-cyclic abelian groups in general.
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5.1. Tame graded elementary Hopf algebras. Consider the following

Hopf algebras. Let W = �m × �n with m even and m|n. Assume g, h are

two generators of W . Let q, p be o(g)-th and o(h)-th primitive roots of unity

respectively. Take two integers l1, l2 with l1|m, l2|n and set q2 := ql1 , p1 := pl2 .

Assume that p1q2 is an l-th primitive root of unity. Then the elementary Hopf

algebra H(m,n, l1, l2, g, h) is defined to be an associative algebra generated by

elements x, y and g, h, with relations

g and h generate Zm × Zn, x2 = y2 = (xy)l + (−q2)
l(yx)l = 0,

gxg−1 = q−1x, gyg−1 = y, hxh−1 = x, hyh−1 = p−1y.

The comultiplication Δ, counit ε, and antipode S are given by

Δ(g) = g ⊗ g, Δ(h) = h⊗ h,

Δ(x) = x⊗ 1 + g
o(g)
2 hl2 ⊗ x, Δ(y) = y ⊗ 1 + gl1h

o(h)
2 ⊗ y,

ε(g) = ε(h) = 1, ε(x) = ε(y) = 0,

S(g) = g−1, S(h) = h−1, S(x) = −g
o(g)
2 h−l2x, S(y) = −g−l1h

o(h)
2 y.

The main result of [18] can be stated as follows.

Lemma 5.1 ([18, Theorems 4.9 and 4.16]): Let H be a connected radically

graded tame elementary Hopf algebra over an algebraically closed field k with

characteristic 0. Then as a Hopf algebra it is isomorphic to H(m,n, l1, l2, g, h)

for some m,n, l1, l2 and two generators g, h of �m × �n.

Here “connected” means that H is connected as an algebra; see [3].

5.2. 3-cocycles over finite abelian groups. For any finite abelian group

G, we obtained a complete set of representatives of 3-cocycles (with coefficients

in k∗) in [20], which is one of the key technical ingredients of this paper. Let’s

recall it.

Let G = �m1 × · · · × �mn be a finite abelian group. A tuple of standard

generators of G is denoted by g1, . . . , gn. For any natural number, ζl is an l-th

primitive root of unity. As usual, we use (B•, ∂•) to denote the bar resolution

of G. Define A to be the set of all sequences

(�)
(a1, . . . , al, . . . , an, a12, . . . , aij , . . . , an−1,n, a123, . . . , arst, . . . , an−2,n−1,n)
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such that 0 ≤ al < ml, 0 ≤ aij < (mi,mj), 0 ≤ arst < (mr,ms,mt) for 1 ≤ l ≤
n, 1 ≤ i < j ≤ n, 1 ≤ r < s < t ≤ n where aij and arst are ordered by the

lexicographic order. The sequence (�) is denoted by a for short.

For any a ∈ A, define a ZG-module map

ωa : B3 −→ k∗(5.1)

[gi11 · · · ginn , gj11 · · · gjnn , gk1
1 · · · gkn

n ]

�→
n∏

l=1

ζ
alil[

jl+kl
ml

]

l

∏
1≤s<t≤n

ζ
astit[

js+ks
ms

]

(ms,mt)

∏
1≤r<s<t≤n

ζ−arstkrjsit
(mr ,ms,mt)

.

Lemma 5.2 ([20, Proposition 3.1]): In the cochain complex (B∗• , ∂∗•), the set

{ωa|a ∈ A}

is a complete set of representatives of 3-cocycles.

Let kZl be the group algebra of the cyclic group Zl = 〈g〉 and for all 0 ≤ i ≤
l − 1 define

1li :=
1

l

l−1∑
j=0

(ζl−i
l )jgj .

It is known that g1li = ζil 1
l
i and {1li|0 ≤ i ≤ l− 1} is a complete set of primitive

idempotents of kZl. If l is a square integer, say l = �2, then let � = g� and

define

��i :=
1

�

�−1∑
j=0

(ζ�−i
�

)j�j .

The superscripts of 1li and �
�

i will be omitted when there is no risk of confusion.

We have the following identity (see also [14]):

(5.2)
�−1∑
j=0

1�j+i = �i.

Let G = Zm ×Zn with m|n and h1, h2 be standard generators. Assume that

m = �2 and n = �2 and let � := �� × ��, �1 := h�1 , �2 := h�2 . Regard

k� as a quasi-Hopf algebra with associator Φ. Then by Lemma 5.2, Φ is of the
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form

Φa,b,c =
∑

ωa,b,c(�
i1�i2 ,�j1�j2 ,�k1�k2)�i1�i2 ⊗ �j1�j2 ⊗ �k1�k2

=
∑

ζ
ai1[

j1+k1
�

]
� ζ

bi2[
j1+k1
�

]

(�,�) ζ
ci2[

j2+k2
�

]
� �i1�i2 ⊗ �j1�j2 ⊗ �k1�k2(5.3)

=
∑

ζ
(ai1+bi2)[

j1+k1
�

]
� ζ

ci2[
j2+k2
�

]
� �i1�i2 ⊗ �j1�j2 ⊗ �k1�k2

for some 0 ≤ a, b < � and 0 ≤ c < �, up to twist equivalence; see [6]. For any

integer i ∈ N, we denote by i′ and i′′ the remainders of the divisions of i by �

and � respectively. Define

Ja,b,c =

m∑
x1,x2=1

n∑
y1,y2=1

ζ
ax1(y1−y′

1)
m ζ

bx2(y1−y′
1)

�(�,�) ζ
cx2(y2−y′′

2 )
n 1x11x2 ⊗ 1y11y2

=
∑

x1,x2,y1,y2

ζ
(ax1+bx2)(y1−y′

1)
m ζ

cx2(y2−y′′
2 )

n 1x11x2 ⊗ 1y11y2 .(5.4)

A key observation, which is known for cyclic groups is as follows; see [14,

Lemma 3.5].

Proposition 5.3: d(Ja,b,c) = Φa,b,c.
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Proof. For brevity, write J = Ja,b,c. Then

d(J) = (1⊗ J)(id⊗Δ)(J)(Δ ⊗ id)(J−1)(J−1 ⊗ 1)

=
∑

x1,x2,y1,y2

ζ
(ax1+bx2)(y1−y′

1)
m ζ

cx2(y2−y′′
2 )

n 1⊗ 1x11x2 ⊗ 1y11y2

∑
i1,i2,j11,j21,j12,j22

ζ(ai1+bi2)(j11+j12−(j11+j12)
′)

m ζci2(j21+j22−(j21+j22)
′′)

n

1i11i2 ⊗ 1j111j21 ⊗ 1j121j22∑
i11,i12,i21,i22,j1,j2

ζ
−[a(i11+i12)+b(i21+i22)](j1−j′1)
m ζ

−c(i21+i22)(j2−j′′2 )
n

1i111i21 ⊗ 1i121i22 ⊗ 1j11j2∑
u1,u2,v1,v2

ζ
−(au1+bu2)(v1−v′

1)
m ζ

−cu2(v2−v′′
2 )

n 1u11u2 ⊗ 1v11v2 ⊗ 1

=
∑

i1,i2,j1,j2,k1,k2

ζ
(ai1+bi2)(j

′
1+k′

1−(j1+k1)
′)

m ζ
ci2(j

′′
2 +k′′

2 −(j2+k2)
′′)

n

1i11i2 ⊗ 1j11j2 ⊗ 1k11k2

=
∑

i1,i2,j1,j2,k1,k2

ζ
(ai1+bi2)[

j1+k1
m ]

� ζ
ci2[

j2+k2
n ]

� �i1�i2 ⊗ �j1�j2 ⊗ �k1�k2

= Φa,b,c.

5.3. Construction. Let H := H(m,n, l1, l2, g, h) and set X := g−
o(g)
2 h−l2x,

Y := g−l1h− o(h)
2 y. Assume that m = �2 and n = �2. By Proposition 4.1,

g = g2h1h
a
2 and h = g1g

b
2h2. We keep the notation of Section 4. Note that

mi = �2
i and ni = �2

i for i = 1, 2. As in the above subsection, let J = Ja,b,c

for some 0 ≤ a, b < � and 0 ≤ c < �. Consider the subalgebra A(H, J) ⊂ H

which is generated by X,Y and �i := g�i

i , �i := h�i

i for i = 1, 2. The main

task of this subsection is to determine when A(H, J) is a quasi-Hopf subalgebra

of HJ .

Convention: For convenience, A(H, J) is abbreviated as A(H) when it is clear

from the context.

We start with a special case in which the order of one of g, h, say h, is n. By

Corollary 4.3, we can take g = h1h
σ
2 and h = h2 for some 0 ≤ σ < n, where

h1, h2 are standard generators of �m × �n. It turns out that this case already

sheds much light on the general situation.
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Lemma 5.4: Assume that g = h1h
σ
2 and h = h2 for some 0 ≤ σ < n. For

H = H(m,n, l1, l2, g, h), we have

(i) o(g) = m, n|σm,

(ii) h1X = ζ−1
m Xh1, h1Y = ζ

σm
n

m Y h1, h2X = Xh2, h2Y = ζ−1
n Y h2,

(iii) 1mi X = X1mi+1, 1
m
i Y = Y 1mi−σm

n
,

(iv) 1ni X = X1ni , 1
n
i Y = Y 1ni+1.

Proof. Since h1 is generated by g and h, there is ξ ∈ k∗ such that h1Xh−1
1 = ξX .

By the definition of H , gXg−1 = ζ−1
o(g)X. At the same time,

gXg−1 = h1h
σ
2X(h1h

σ
2 )

−1 = h1Xh−1
1 = ξX.

Therefore, ξ = ζ−1
o(g). So o(g) ≤ o(h1). On the other hand g = h1h

σ
2 , and so

o(g) ≥ o(h1). Thus o(g) = o(h1) = m. This implies that 1 = gm = (h1h
σ
2 )

m =

(hσ
2 )

m. So n|σm. We have proved (i).

For (ii), the first equality already appeared in the proof of (i). We only need

to prove the second equality as the last two equalities are just the definition

of H . In fact, by definition, gY = Y g. That is, h1h
σ
2Y = Y h1h

σ
2 . Since

h2Y = ζ−1
n Y h2, h1h

σ
2Y = ζ−σ

n h1Y hσ
2 . Therefore, ζ

−σ
n h1Y = Y h1 which implies

that h1Y = ζσnY h1 = ζ
σm
n

m Y h1.

For (iii), we have

1mi X =
1

m

m−1∑
j=0

ζ−ij
m hj

1X =
1

m

m−1∑
j=0

ζ−ij
m ζ−j

m Xhj
1

=X(
1

m

m−1∑
j=0

ζ−(i+1)j
m hj

1) = X1mi+1.

1mi Y =
1

m

m−1∑
j=0

ζ−ij
m hj

1Y =
1

m

m−1∑
j=0

ζ−ij
m ζ

σmj
n

m Y hj
1

=Y (
1

m

m−1∑
j=0

ζ
−(i− σm

n )j
m hj

1) = Y 1mi−σm
n
.

The proof of (iv) is similar to (iii) and so we omit it.

Proposition 5.5: Assume that g = h1h
σ
2 and h = h2 for some 0 ≤ σ < n.

Then A(H) is a quasi-Hopf subalgebra of HJ if and only if

a = 0, �|l2, l1 + b ≡ 0(�), c+ σl1 ≡ 0(�).
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Proof. By Proposition 5.3, we know Φa,b,c ∈ A(H) ⊗ A(H) ⊗ A(H). Again,

write J = Ja,b,c. In the proof of the following equations, identities in Lemma

5.4 are used freely.

ΔJ (X) =JΔ(X)J−1 =
∑
xi,yi

ζ
(ax1+bx2)(y1−y′

1)
m ζ

cx2(y2−y′′
2 )

n 1x11x2 ⊗ 1y11y2

× (X ⊗ g−
o(g)
2 h−l2 + 1⊗X)

×
∑
si,ti

ζ
−(as1+bs2)(t1−t′1)
m ζ

−cs2(t2−t′′2 )
n 1s11s2 ⊗ 1t11t2

=
∑

xi,yi,si,ti

ζ
(ax1+bx2)(y1−y′

1)
m ζ

cx2(y2−y′′
2 )

n ζ
−(as1+bs2)(t1−t′1)
m ζ

−cs2(t2−t′′2 )
n

ζ
−my1

2
m ζ

−mσy2
2 −l2y2

n X1x1+11x21s11s2 ⊗ 1y11y21t11t2

+
∑

xi,yi,si,ti

ζ
(ax1+bx2)(y1−y′

1)
m ζ

cx2(y2−y′′
2 )

n ζ
−(as1+bs2)(t1−t′1)
m ζ

−cs2(t2−t′′2 )
n

1x11x21s11s2 ⊗X1y1+11y21t11t2

=
∑
xi,yi

ζ
(ax1+bx2)(y1−y′

1)
m ζ

cx2(y2−y′′
2 )

n ζ
−(ax1+a+bx2)(y1−y′

1)
m ζ

−cx2(y2−y′′
2 )

n

ζ
−my1

2
m ζ

−mσy2
2 −l2y2

n X1x1+11x2 ⊗ 1y11y2

+
∑
xi,yi

ζ
(ax1+bx2)(y1−y′

1)
m ζ

cx2(y2−y′′
2 )

n ζ−(ax1+bx2)(y1+1−(y1+1)′)
m ζ

−cx2(y2−y′′
2 )

n

1x11x2 ⊗X1y1+11y2

=
∑
xi,yi

ζ
−a(y1−y′

1)−my1
2

m ζ
−mσy2

2 −l2y2
n X1x1+11x2 ⊗ 1y11y2

+
∑
xi,yi

ζ
−(ax1+bx2)(y

′
1+1−(y1+1)′)

m 1x11x2 ⊗X1y1+11y2 .

Consider the first item of this expression clearly∑
xi,yi

ζ
−a(y1−y′

1)−my1
2

m ζ
−mσy2

2 −l2y2
n X1x1+11x2 ⊗ 1y11y2 ∈ A(H)⊗A(H)

if and only if �|(a+ m
2 ) and �|(l2 + mσ

2 ). Since we already have �|m2 (m is

even, by assumption) and �|mσ
2 , the condition is equivalent to�|a and �|l2. So

a = 0. It is not hard to see that the second term always belongs to A(H)⊗A(H).

Therefore, ΔJ(X) ∈ A(H)⊗A(H) if and only if a = 0, �|l2.



178 HUA-LIN HUANG, GONGXIANG LIU AND YU YE Isr. J. Math.

Now consider ΔJ (Y ).

ΔJ(Y ) =JΔ(Y )J−1 =
∑
xi,yi

ζ
(ax1+bx2)(y1−y′

1)
m ζ

cx2(y2−y′′
2 )

n 1x11x2 ⊗ 1y11y2

× (Y ⊗ g−l1h−n
2 + 1⊗ Y )

×
∑
si,ti

ζ
−(as1+bs2)(t1−t′1)
m ζ

−cs2(t2−t′′2 )
n 1s11s2 ⊗ 1t11t2

=
∑

xi,yi,si,ti

ζ
(ax1+bx2)(y1−y′

1)
m ζ

cx2(y2−y′′
2 )

n ζ
−(as1+bs2)(t1−t′1)
m ζ

−cs2(t2−t′′2 )
n

ζ−l1y1
m ζ

−σl1y2−ny2
2

n Y 1x1− σm
n
1x2+11s11s2 ⊗ 1y11y21t11t2

+
∑

xi,yi,si,ti

ζ
(ax1+bx2)(y1−y′

1)
m ζ

cx2(y2−y′′
2 )

n ζ
−(as1+bs2)(t1−t′1)
m ζ

−cs2(t2−t′′2 )
n

1x11x21s11s2 ⊗ Y 1y1− σm
n
1y2+11t11t2

=
∑
xi,yi

ζ
(ax1+bx2)(y1−y′

1)
m ζ

cx2(y2−y′′
2 )

n ζ
−(a(x1− σm

n )+b(x2+1))(y1−y′
1)

m

ζ
−c(x2+1)(y2−y′′

2 )
n ζ−l1y1

m ζ
−σl1y2−ny2

2
n Y 1x1−σm

n
1x2+1 ⊗ 1y11y2

+
∑
xi,yi

ζ
(ax1+bx2)(y1−y′

1)
m ζ

cx2(y2−y′′
2 )

n ζ
−(ax1+bx2)(y1− σm

n −(y1− σm
n )′)

m

ζ−cx2(y2+1−(y2+1)′′)
n 1x11x2 ⊗ Y 1y1− σm

n
1y2+1

=
∑
xi,yi

ζ
−(−aσm

n +b)(y1−y′
1)−l1y1

m ζ
−c(y2−y′′

2 )−σl1y2−ny2
2

n Y 1x1− σm
n
1x2+1

⊗ 1y11y2

+
∑
xi,yi

ζ
(ax1+bx2)((y1− σm

n )′−y′
1+

σm
n )

m ζ
cx2((y2+1)′′−y′′

2 −1)
n 1x11x2

⊗ Y 1y1− σm
n
1y2+1.

Similar to the analysis for ΔJ (X), it follows that ΔJ (Y ) ∈ A(H)⊗A(H) if and

only if l1 + b ≡ 0(�), c+ σl1 ≡ 0(�).

Since

αJ =
∑
x1,x2

ζ
(ax1+bx2)(x1−x′

1)
m ζ

cx2(x2−x′′
2 )

n 1x11x2 ,

βJ =
∑
x1,x2

ζ(ax1+bx2)((m−x1)−(m−x1)
′)

m ζcx2((n−x2)−(n−x2)
′′)

n 1x11x2 ,
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so

αJβJ =
∑
x1,x2

ζ
−(ax1+bx2)((m−x1)

′+x′
1)

m ζ
−cx2((n−x2)

′′+x′′
2 )

n 1x11x2 .

Clearly, the coefficients of 1s�+x1 (resp. 1t�+x2) and 1x1 (resp. 1x2) are iden-

tical, thus αJβJ ∈ A(H).

Under the assumption that a = 0, we have

SJ (X) =βJS(X)β−1
J =

∑
x1,x2

ζbx2((m−x1)−(m−x1)
′)

m ζcx2((n−x2)−(n−x2)
′′)

n 1x11x2

× (−Xg
m
2 hl2)

∑
s1,s2

ζ−bs2((m−s1)−(m−s1)
′)

m ζ−cs2((n−s2)−(n−s2)
′′)

n 1s11s2

=−
∑
x1,x2

ζbx2((m−x1)−(m−x1)
′)

m ζcx2((n−x2)−(n−x2)
′′)

n X1x1+11x2

× ζ
m
2 (x1+1)
m ζ

mσx2
2 +l2x2

n

∑
s1,s2

ζ−bs2((m−s1)−(m−s1)
′)

m ζ−cs2((n−s2)−(n−s2)
′′)

n 1s11s2

=−
∑
x1,x2

ζ
bx2((m−x1−1)′−(m−x1)

′+1)+m
2 (x1+1)

m ζ
mσx2

2 +l2x2
n X1x1+11x2.

From this, we find that SJ(X) ∈ A(H) if �|l2. Also, assume that a = 0; we

have

SJ(Y ) =βJS(Y )β−1
J =

∑
x1,x2

ζbx2((m−x1)−(m−x1)
′)

m ζcx2((n−x2)−(n−x2)
′′)

n 1x11x2

× (−Xgl1h
n
2 )
∑
s1,s2

ζ−bs2((m−s1)−(m−s1)
′)

m ζ−cs2((n−s2)−(n−s2)
′′)

n 1s11s2

=−
∑
x1,x2

ζbx2((m−x1)−(m−x1)
′)

m ζcx2((n−x2)−(n−x2)
′′)

n Y 1x1− σm
n
1x2+1

× ζ
l1(x1− σm

n )
m ζ

σl1(x1+1)+n
2 (x2+1)

n∑
s1,s2

ζ−bs2((m−s1)−(m−s1)
′)

m ζ−cs2((n−s2)−(n−s2)
′′)

n 1s11s2

=−
∑
x1,x2

ζ
bx2(− σm

n −(m−x1)
′+(m−x1+

σm
n )′)+(l1+b)(x1− σm

n )+b(m−x1+
σm
n )′

m

ζ
cx2(1−(n−x2)

′′−(n−x2−1)′′)+(c+σl1+
n
2 )(x2+1)+c(n−x2−1)′′

n Y 1x1− σm
n
1x2+1.

align Similarly, one can show that SJ(Y ) ∈ A(H) if a = 0, l1 + b ≡ 0(�) and

c+ σl1 ≡ 0(�).
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A quasi-Hopf algebra is said to be genuine if it is not twist equivalent to a

Hopf algebra.

Proposition 5.6: If b �= 0 or c �= 0, then the quasi-Hopf algebra (A(H),Φ0,b,c)

constructed in the above proposition is genuine.

Proof. Otherwise, A(H)J is a Hopf algebra for some invertible element J ∈
A(H)⊗A(H). Then consider its degree zero component

J0 =
∑
xi,yi

δ(x1, x2, y1, y2)�x1�x2 ⊗ �y1�y2 .

Therefore, Φ0,b,c = dJ0, which is equivalent to saying ω0,b,c = dδ, a contradic-

tion.

Finally we are ready to consider the general case, that is, without the as-

sumption that h is standard. According to Proposition 4.1, there are integers

m1,m2, n1, n2, a, b such that �m × �n = (�m1 × �m2) × (�n1 × �n2) with

m1|m2, n1|n2, (m2, n2) = 1 and g = g2h1h
a
2 , h = g1g

b
2h2. Here g1, g2 (resp.

h1, h2) are standard generators of �m1 × �m2 (resp. �n1 × �n2).

Assume that mi =�2
i and ni = �2

i .. By Lemma 5.2, every associator of the

group algebra k�m×�n (view as a quasi-Hopf algebra) is of the following form

Φa1,b1,c1Φa2,b2,c2

=
∑

ζ
(a1i1+b1i2)[

j1+k1
�1

]
�1 ζ

c1i2[
j2+k2
�2

]
�2 ��1

i1
��2

i2
⊗ ��1

j1
��2

j2
⊗ ��1

k1
��2

k2

×
∑

ζ
(a2x1+b2x2)[

y1+z1
�1

]
�1 ζ

c2x2[
y2+z2
�2

]
�2 ��1

x1
��2
x2

⊗ ��1
y1
��2
y2

⊗ ��1
z1 �

�2
z2

for some 0 ≤ a1, b1 < �� (resp. 0 ≤ a2, b2 < ��) and 0 ≤ c1 < �2 (resp.

0 ≤ c2 < �2 ), up to twist equivalence. Similarly to Proposition 5.3, we can

construct Ja1,b1,c1 (resp. Ja2,b2,c2) and show that d(Ja1,b1,c1) = Φa1,b1,c1 and

d(Ja2,b2,c2) = Φa2,b2,c2 .

So, in one word, the group �m ×�n “splits” into two parts and every part is

the same as the special case considered before. Therefore, we state the following

conclusion without proof.

Theorem 5.7: Using notions given above and setting J = Ja1,b1,c1Ja2,b2,c2 , we

have:

(i) A(H) is a quasi-Hopf subalgebra of HJ if and only if

a1 = 0, �2|l1, l2 + b1 ≡ 0(�1), c1 + bl2 ≡ 0(�2),
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a2 = 0, �2|l2, l1 + b2 ≡ 0(�1), c2 + al1 ≡ 0(�2).

(ii) If (b1, b2, c1, c2) �= (0, 0, 0, 0), then A(H) is genuine.

6. Graded elementary quasi-Hopf algebras of tame type

In this section, the structures of tame (radically) graded elementary quasi-Hopf

algebras will be determined. We begin with a basic observation.

Proposition 6.1: The quasi-Hopf algebras A(H) are tame.

Proof. Let H := H(m,n, l1, l2, g, h). For convenience, let m1 = m and m2 = n.

Assume that mi = �2
i for i = 1, 2. Let h1, h2 be standard generators of

�m1 × �m2 ⊂ H . Write G := ��1 × ��2 and C := Rep(A(H)). We will show

that Rep(H) is equivalent to CG.

For ji = 0, . . . ,�i−1 and i = 1, 2, let Fi,ji : Rep(A(H)) → Rep(A(H)) be the

functor defined as follows. For an object (V, πV ) ∈ Rep(A(H)), Fi,ji (V ) = V

as vector space, and πFi,ji
(a) = πV (h

ji
i ah

−ji
i ), a ∈ A(H).

The isomorphism γ1j1,1k1 : F1,j1(F1,k1 (V )) → F1,(j1+k1)′(V ) (resp. γ2j2,2k2 :

F2,j2 (F2,k2(V )) → F2,(j2+k2)′′(V )) is given by the action

(h�1
1 )

(j1+k1)′−j1−k1
�1 ∈ A(H) (resp. (h�2

2 )
(j2+k2)′′−j2−k2

�2 ∈ A(H))

and γi1j,i2k = 1 for i1 �= i2.

By the definition of CG, an object in it is a representation V of A(H) together

with a collection of linear isomorphisms pi,ji : V → V , ji = 0, . . . ,�i − 1,

i = 1, 2, such that

pi,ji(av) = hji
i ah

−ji
i pi,ji(v), ∀ a ∈ A(H), v ∈ V,

and

p1,j1p1,k1 = p1,(j1+k1)′(h
�1

1 )
−(j1+k1)′+j1+k1

�1 ,

p2,j2p2,k2 = p2,(j2+k2)′′(h
�2
2 )

−(j2+k2)′′+j2+k2
�2 .

It is now straightforward to verify that this is the same as a representation of

H , because H is generated by A(H) and the pi,ji = hji
i with exactly the same

relations.

Therefore, Rep(A(H))G is equivalent to Rep(H) and thus A(H) is tame by

Theorem 3.7.
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Remark 6.2: (1) The method proving that CG is equivalent to Rep(H) already

appeared in the proof of [10, Theorem 4.2] by Etingof and Gelaki.

(2) To show Proposition 6.1, one may take a more direct way. It is not hard

to see that A(H) = A#k(�m×�n) where A = k〈x, y〉/(x2, y2, (xy)m− c(yx)m)

for some 0 �= c ∈ k. Note that A is a special biserial algebra and thus tame.

Therefore A(H) is tame by [22, Theorem 4.5 ]. The method adopted here reveals

the power of the idea of equivariantization and de-equivariantization.

Proposition 6.3: Let A =
⊕

i≥0 A[i] be a connected tame graded elementary

quasi-Hopf algebra which is genuine. Then there are H = H(m,n, l1, l2, g, h)

and J ∈ H⊗H such that there exists a graded quasi-Hopf algebra epimorphism

π : A � A(H, J) which is the identity restricted to degrees 0 and 1.

Proof. Using the same argument as for [18, Proposition 4.3], we observe first

that A0 is the group algebra of an abelian group which is generated by two

elements �,�. So A[0] = k��×�� with�|�. Let �1,�2 be a tuple of standard

generators of ��×��. Lemma 2.9 implies that the representation type number

of A is 2, which is equivalent to the fact that A[1] is free A[0]-module of rank 2.

The following is similar to the proof of [2, Theorem 3.2.1]. Since A[1] is an

A[0]-bimodule and A[0] = k�� × ��, then A[1] has a decomposition

A[1] =
⊕
r1,r2

Ar1,r2 [1]

where Ar1,r2 [1] = {x ∈ A|�1x�
−1
1 = ζr1

�
x, �2x�

−1
2 = ζr2

�
x} for 0 ≤ r1 <

�, 0 ≤ r1 < �. Let Â be the tensor algebra of A[1] over A[0]. Obviously, it

is a quasi-Hopf algebra and we have a canonical surjection π1 : Â � A. Let

m =�2, n = �2, and let χ1, χ2 be the two automorphisms of Â defined by

χ1|A[0] = Id, χ1|Ar1,r2 [1]
= ζr1m Id, χ2|A[0] = Id, χ2|Ar1,r2 [1]

= ζr2n Id .

Let L be the sum of all quasi-Hopf ideals of Â contained in
⊕

i≥2 Â[i]. Then

Kerπ1 ⊆ L and χi(L) = L, so χi acts on Ā := Â/L for i = 1, 2. Define H̄ to be

the quasi-Hopf algebra generated by Ā together with two group-like elements

h1, h2 subject to relations

h�1 = �1, h�2 = �2, h1h2 = h2h1, hizh
−1
i = χi(z)

for all z ∈ Ā and i = 1, 2. So h1, h2 generate a group in H̄ which is isomorphic

to �m × �n.
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By Lemma 5.2, we can assume that the associator of A equals Φa,b,c for some

0 ≤ a, b <�, 0 ≤ c < �. Define J := Ja,b,c ∈ H̄ ⊗ H̄ just as equation (5.4). By

Proposition 5.3, H̄J−1

is a connected graded Hopf algebra.

Claim: H̄J−1

is a tame algebra.

Proof of this Claim. Since H̄J−1

is none other than H̄ as an algebra, it suffices

to show that H̄ is tame. By the same idea used in the proof of Proposition

6.1, Rep(H̄) is equivalent to (Rep Ā)G for some finite group G. Then Theorem

3.7 implies that H̄ and Ā have the same representation type. So it remains

to show that Ā is of tame type. Since Ker(π1) ⊆ L, there is a quasi-Hopf

algebra epimorphism π : A � Ā. Since A is tame, Ā is of tame type or finite

representation type. If Ā is of finite representation type, then its representation

type number is 1 by Lemma 2.9. Since clearly π is identity on A[0]⊕A[1], A and

Ā have the same representation type number. Therefore, nĀ = 2 and thus Ā is

not of finite representation type. This completes the proof of this claim.

By Lemma 5.1, H̄J−1 ∼= H(m,n, l1, l2, g, h) for some l1|m, l2|n and two

generators g, h of �m × �n. Regarding this isomorphism as an identity, Ā =

A(H(m,n, l1, l2, g, h), J) and so we have a quasi-Hopf epimorphism π : A �
A(H(m,n, l1, l2, g, h), J) which is the identity restricted to degrees 0 and 1.

The proof is complete.

Proposition 6.4: The epimorphism π given in Proposition 6.3 is indeed an

isomorphism.

Proof. As Theorem 5.7 indicates that the general situation separates naturally

into two independent parts, so there is no harm to assume that A(H, J) is just

the A(H) considered in Proposition 5.5 and thus all notation appearing therein

is used freely henceforth. Since π is an identity in degree 1 and degree 0 parts,

we denote the preimage of X,Y under π still by X,Y. To prove the assertion,

it is enough to show that the relations in A(H) still hold in A. In other words,

the equations X2 = 0, Y 2 = 0 and (XY )l + (−q−1
2 )l(Y X)l = 0 hold in A. We

remark that the last equation appears different from the corresponding relation

in H(m,n, l1, l2, g, h) (q2 is replaced by q−1
2 ), due to the choice of generators

X := g−
o(g)
2 h−l2x, Y := g−l1h− o(h)

2 y.
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Claim: X2 = 0 holds in A.

Proof of this Claim If not, consider the subalgebra B ⊂ A generated by A[0] and

X2. Of course, B is finite-dimensional. Using the fact that the comultiplication

is an algebra map and the formula of ΔJ in A(H), we have

ΔJ(X
2) =

∑
xi,yi

ζ
−2a(y1−y′

1)
m ζ−2l2y2

n X21x1+21x2 ⊗ 1y11y2

+
∑
xi,yi

ζ
(ax1+bx2)((y1+2)′−y′

1−2)
m 1x11x2 ⊗X21y1+21y2 .

So B is indeed a quasi-Hopf subalgebra of A. Similar to the proof of Proposition

6.3, let B̂ be the tensor algebra TB[0]B[1]. Then it is a quasi-Hopf algebra as

well. Let I be the unique maximal quasi-Hopf ideal contained in
⊕

i≥2 B̂[i] and

set B̄ = B̂/I. In the same manner, we may define χ1 and χ2 as in Proposition

6.3. Then we can construct a twist J ofHB := (B̄#k[h1, h2])/(h
�
1 −�1, h

�
2 −�2)

such that HJ−1

B is a Hopf algebra. In this Hopf algebra, direct computations

show that Δ(X2) = X2⊗h−2l2
2 +1⊗X2, h2X

2 = X2h2. It is well known that

this condition will force (X2)i �= 0 for all i � 1. In fact, if otherwise, take t to

be smallest number such that (X2)t = 0. Then

0 = Δ((X2)t) =

t∑
j=0

(
j

t

)
(X2)j ⊗ (X2)t−jh−2jl2

2

which leads to the contradiction (X2)t−1 = 0. Therefore, the subalgebra gener-

ated by X2 is infinite dimensional and thus B is infinite dimensional too. This

is a contradiction.

Using the same argument, we have Y 2 = 0 in A. The proof for the equa-

tion (XY )l + (−q−1
2 )l(Y X)l = 0 is more complicated, but the same argument

used above still applies. Hence we only sketch the proof and leave the de-

tails to the interested reader. Let B be the subalgebra generated by A[0] and

(XY )l +(−q−1
2 )l(Y X)l. Again, it is a quasi-Hopf subalgebra of A and in HJ−1

B

we have

Δ(Z) = Z ⊗ g + 1⊗ Z, gZ = Zg,

where Z = (XY )l + (−q−1
2 )l(Y X)l and g = h

l(−l1−m
2 )

1 h
σl(−l1−m

2 )+l(−l2−n
2 )

2 ; see

[18, Lemma 4.14] for an explanation of the complicated form of g. From this,

one may conclude that HJ−1

B is infinite dimensional, which contradicts the fact

that B is finite dimensional.
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Combining the preceding two propositions, our desired main result follows.

Theorem 6.5: Let A =
⊕

i≥0 A[i] be a connected tame graded elementary

quasi-Hopf algebra. Then A is twist equivalent to one of the following quasi-

Hopf algebras:

(i) H(m,n, l1, l2, g, h) for some m,n, l1, l2 and two generators g, h of �m ×
�n,

(ii) A(H, J) for some H = H(m,n, l1, l2, g, h) and twist J ∈ H ⊗H .
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